Elliptic multiparameter eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems
This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...
متن کاملOrlicz Spaces and Nonlinear Elliptic Eigenvalue Problems
Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...
متن کاملVariational Methods for Nonlinear Elliptic Eigenvalue Problems
In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems: PROBLEM A. To minimize fa F(x> u, • • • , Du)dx over a subspace VofW>*(tt). PROBLEM B. TO minimize ƒ« F(x, w, • • • , Du)dx for u in V with / a G(x, u, • • • , D^u)dx^c. The solution of the first problem yields a weak solution of a corresponding elliptic boundar...
متن کاملA note on quasilinear elliptic eigenvalue problems
We study an eigenvalue problem by a non-smooth critical point theory. Under general assumptions, we prove the existence of at least one solution as a minimum of a constrained energy functional. We apply some results on critical point theory with symmetry to provide a multiplicity result.
متن کاملhp - Finite Elements for Elliptic Eigenvalue Problems
Convergence rates for finite element discretisations of elliptic eigenvalue problems in the literature usually are of the form: If the mesh width h is fine enough then the eigenvalues resp. eigenfunctions converge at some well-defined rate. In this paper, we will determine the maximal mesh width h0 — more precisely the minimal dimension of a finite element space — so that the asymptotic converg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1987
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500028297